公司新闻
新闻中心
六大储能技术路线分析你觉得哪种好?
来源:米乐平台官网 | 作者:米乐手机登录 | 发布时间: 2024-05-12 08:51:20 | 9 次浏览 | 分享到:

  在新型电力系统中,储能将成为至关重要的一环,是新能源消纳以及电网安全保障必要保障,在发电侧、电网侧、用电侧都会得到广泛的应用,需求空间广阔。国内市场,风光强制配储政策推动储能需求指数增长。在市场需求爆发以及政策鼓励的双重推动下,成熟的抽水蓄能、锂电储能呈现爆发性增长,其他新型储能技术也进入了发展快车道。

  本文对抽水蓄能、锂离子电池、压缩空气、钠离子、全钒液流电池、铅炭电池六种储能的发展现状、系统成本、应用前景做了评估。

  按照时长要求的不同,储能的应用场景大致可以分为容量型(≥4h)、能量型(约1~2h)、功率型(≤30min)和备用型(≥15min)四类。

  容量型储能场景包括削峰填谷或离网储能等,长时储能技术种类较多,包括抽水蓄能、压缩空气、储热蓄冷、储氢以及各类容量型储能电池(例如钠硫电池、液流电池、铅炭电池、锂浆料电池等)。

  2017-2020年,电网响应能源局、发改委降低弃风弃光率的决策,充分利用电力体系的灵活性资源消纳新能源,使得弃风弃光率下降到2%。同时电网压力凸显,部分省份开始要求电源侧配置储能。2021年,多个储能行业的重磅文件公布,储能等迎来历史性发展机遇。

  从整个电力系统的角度看,储能的应用场景可以分为发电侧、输配电侧和用电侧三大场景,除此之外的应用还包括辅助服务、分布式发电与微网等。

  各类储能技术中,抽水蓄能是应用最为成熟;储热技术也已处于规模化应用阶段,目前我国火电灵活性改造大部分采取储热技术;锂离子电池储能开始近两年得到了飞速应用;压缩空气以及液流电池也迎来了商业化应用。

  抽水蓄能具有技术优、成本低、寿命长、容量大、效率高等优点。由于抽水蓄能电站运行模式是将能量在电能和水的势能之间转换,其储能容量主要取决于上下水库的高度差和水库容量,由于水的蒸发渗漏现象导致的损失几乎可以忽略不计,抽水蓄能的储能周期得以无限延长,可适应各种储能周期需求,系统循环效率可达70%-80%。与此同时,建设完成后的抽蓄电站坝体可使用100年左右,电机设备等预计使用年限在40-60年左右。

  考虑抽水蓄能电站初始投资成本与项目选址密切相关,后期新建项目选址经济性下降,初始投资成本可能将会上升,另外电站实际循环次数假定在300-500次之间。我们预计不考虑充电成本的前提下,常规抽水蓄能电站LOCE范围为0.23- 0.34元/kWh。

  “十四五”以来,我国加快部署抽水蓄能项目开发建设。《抽水蓄能中长期发展规划(2021-2035年)》规定:到2025年,抽水蓄能投产总规模较“十三五”翻一番,达到6200万千瓦以上(按照6元/W测算,投资须达1800亿左右);到2030年,抽水蓄能投产总规模较“十四五”再翻一番,达到1.2亿千瓦左右。(按照6元/W测算,投资须达5400亿左右); 另外,2021年8月份公布的规划储能项目名单共551个项目,总计6.79亿千瓦。

  政策驱动下,全国各省市迅速布局抽水蓄能项目。2022年1月以来,已经有20个省份公布了2022年省级重点建设项目名单。根据国际能源网统计,截至目前我国各省公布的重点项目中,抽水蓄能累计装机已达104.3GW,累计投资超6000亿。

  2021年我国电化学储能装机中,锂离子电池占比高达89.7%,是目前技术比较成熟,发展势头最为迅猛的储能方式。

  锂离子储能产业链由上游设备商,中游集成商和下游终端用户组成。其中设备包括电池、EMS(能量管理系统)、BMS(电池管理系统)、PCS(变流器);集成商包括储能系统集成和EPC;终端用户则由发电侧、电网侧、用户侧以及通信/数据中心组成。

  储能电池是电化学储能系统核心部分。目前市场上的主流电池根据技术路线不同,大致可分为锂离子电池、铅碳电池、液流电池和钠离子电池。不同技术路线的电池响应速度、放电效率都不尽相同,也有各自的适用范围和优缺点。

  根据GGII统计,2021年国内储能电池出货量48GWh,其中电力储能电池出货量29GWh,同比增长339%;而根据全球研究机构EVTank与伊维经济研究院共2021年全球储能电池出货量66.3GWh,同比增长132.6%,电力系统储能是主要增量贡献。

  根据正极材料的不同,现行主流锂离子电池有三元和磷酸铁锂两类。磷酸铁锂电池能量密度比三元材料低,同样成本也较低。储能领域对能量密度要求不高,成本低、寿命长的磷酸铁锂电池更受青睐。

  电池作为整个储能系统中核心组成部分,成本占到整个储能系统成本的50%,是储能系统后续降本的重要渠道。2021年我国磷酸铁锂电池储能中标价格大多集中在1.2-1.7元/Wh。而根据彭博新能源财经(BNEF)测算,2022年全球电化学储能EPC成本约为261美元/kWh(折合人民币约1.66元/Wh),预计2025年将降至203美元/kWh(折合人民币约1.29元/Wh)。2021年以来大量EPC中标价格1.3-1.7元/kWh之间。

  国内压缩空气储能技术不断进步,压缩空气储能(CAES)、先进绝热压缩空气储能(AA-CAES)、超临界压缩空气储能系统(SC-CAES)、液态压缩空气(LAES)等都有研究覆盖,500kW容量等级、1.5MW容量等级及10MW容量等级的压缩空气储能示范工程均已建成。

  国际上1978年建成德国汉特福海与1991年建成的美国阿拉巴马商业化压缩空气储能电站为商业化电站。国内陆续进行了压缩空气、超临界压缩空气、液态压缩空气储能项目的研发与建设。其中张家口国际首套100MW先进压缩空气储能示范项目于2021年底顺利并网,整体研发进程及系统性能均处于国际领先水平。

  系统效率的提升以及成本的下降,是压缩空气储能商业化发展的基础。目前从已建成和在建的项目来看,兆瓦级的系统效率可达52.1%,10兆瓦的系统效率可达60.2%,百兆瓦级别以上的系统设计效率可以达到70%,先进压缩空气储能系统效率能够逼近75%。系统规模增加后,单位投资成本也持续下降,系统规模每提高一个数量级,单位成本下降可达30%左右。

  初始投资和利用小时数的变化对度电成本的影响巨大,而随着技术进步,初始投资仍有下降空间;利用小时数主要看电站在实际运营中的利用率,每天充放次数越高,成本越低。在100MW/400MWh的系统中,初始投资5-6元/W、年循环次数达到450-600次的情况下,度电成本区间为0.252-0.413元/kWh。

  钠离子电池性能优异,被寄予厚望。决定电化学储能能否被大面积应用的关键因素包括安全性、材料资源可得性、高低温性能、寿命、投资成本等,而根据钠离子电池最新研究进展,它在这些方面都表现出了良好的性能。在规模化应用后成本有望低于铁锂电池,可在大规模电化学储能、低速电动车等领域得到广阔应。


米乐客服